Structured Streaming
Structured Streaming ์ ๋ฐ์ดํฐ ์คํธ๋ฆผ์ ํ ์ด๋ธ๋ก ๊ด๋ฆฌํ๋ค. ๋งค ๋ฏธ๋๋งค์น ๋ง๋ค ์๋ก์ด ๋ฐ์ดํฐ ์คํธ๋ฆผ ์ ์ ๋๋ฉด ํ ์ด๋ธ์ ์ถ๊ฐ๋๋ค.
Basic Concepts


Types of time windows

Handling Late Data and Watermarking

import spark.implicits._
val words = ... // streaming DataFrame of schema { timestamp: Timestamp, word: String }
// Group the data by window and word and compute the count of each group
val windowedCounts = words
.withWatermark("timestamp", "10 minutes")
.groupBy(
window($"timestamp", "10 minutes", "5 minutes"),
$"word")
.count()
์ฐธ๊ณ ์๋ฃ
Spark Documentation, https://docs.microsoft.com/ko-kr/azure/databricks/getting-started/spark/streaming
Last updated
Was this helpful?